hypervolume
install.packages("hypervolume")
library(hypervolume)
library(ggplot2)
library(gridExtra)
data(iris)
hv1 = hypervolume_gaussian(subset(iris, Species=="virginica")[,1:3])
hv2 = hypervolume_gaussian(subset(iris, Species=="versicolor")[,1:3])
hv_set <- hypervolume_set(hv1, hv2, check.memory=FALSE)
hypervolume_overlap_statistics(hv_set)
data(iris)
e_ball <- expectation_ball(iris[,1:3])
data(iris)
e_convex <- expectation_convex(iris[,1:3], check.memory=FALSE)
plot(e_convex)
data(iris)
hv = hypervolume_gaussian(iris[,1:2])
get_centroid(hv)
data(iris)
hv = hypervolume(data=subset(iris, Species=="setosa")[,1:2],method='box')
summary(hv)
data(iris)
hv = hypervolume_box(data=subset(iris, Species=="setosa")[,1:2],name='setosa')
summary(hv)
plot3d(hv)
hv@ValueAtRandomPoints
expectation_maximal(iris[,1:3])
aa <- get_volume(hv)
plot(aa)
data(iris)
hv1 = hypervolume_gaussian(subset(iris, Species=="virginica")[,1:3])
hv2 = hypervolume_gaussian(subset(iris, Species=="versicolor")[,1:3])
hypervolume_distance(hv1, hv2, type='centroid')
hypervolume_distance(hv1, hv2, type='minimum', num.points.max=500, check.memory=FALSE)
data(iris)
iris_ss = subset(iris, Species=="setosa")[,1:3]
hv = hypervolume_box(data=iris_ss,name='setosa')
probs <- hypervolume_estimate_probability(hv, points=iris_ss)
data(iris)
iris[,"Species"] <- iris[,"Species"] == "setosa"
m_glm = glm(Species~.,data=iris)
hv_general_glm = hypervolume_general_model(m_glm,
range.box=padded_range(iris[,1:4]),type='response')
plot(hv_general_glm)
hypervolume_project
not run for speed - uncomment to try!
data(iris)
hv = hypervolume_gaussian(iris[,1:3])
plot(hv, show.3d=TRUE)
hypervolume_save_animated_gif()
data(iris)
hv1 <- hypervolume_gaussian(iris[,1:3],kde.bandwidth=0.1)
hv1_segmented <- hypervolume_segment(hv1, num.points.max=100,
distance.factor=2, check.memory=FALSE)
plot(hv1_segmented)
hv1 = hypervolume_gaussian(subset(iris, Species=="setosa")[,1:3],
name='setosa')
hv2 = hypervolume_gaussian(subset(iris, Species=="virginica")[,1:3],
name='virginica')
hv3 = hypervolume_gaussian(subset(iris, Species=="versicolor")[,1:3],
name='versicolor')
hv_set12 = hypervolume_set(hv1, hv2, check.memory=FALSE)
hv_set23 = hypervolume_set(hv2, hv3, check.memory=FALSE)
hypervolume_overlap_statistics(hv_set12)
hypervolume_overlap_statistics(hv_set23)
get_volume(hv_set23)
hv1 = hypervolume_gaussian(subset(iris, Species=="setosa")[,1:3])
hv1_thinned = hypervolume_thin(hv1, num.points=1000)
hv1_thinned
data(iris)
hv = hypervolume_gaussian(data=subset(iris, Species=="setosa")[,1:3],name='setosa')
hvlist = hypervolume_threshold(hv, plot=TRUE)
head(hvlist$Statistics)
plot(hvlist$HypervolumesThresholded[[c(1,5,10,15,20)]],
show.random=FALSE, show.data=FALSE,show.centroid=FALSE)
plot(hypervolume_threshold(hv, plot=FALSE, verbose=FALSE,
quantile.requested=0.2,quantile.requested.type="volume")[[1]])
data(iris)
hv = hypervolume_gaussian(subset(iris, Species=="versicolor")[,1:2],samples.per.point=10)
varimp = hypervolume_variable_importance(hv,verbose=FALSE)
barplot(varimp)